Hyperekplexia and stiff person syndrome can be caused by defects of human glycine receptors, an anionic ligand-gated ion channel. These receptors are found in all animal kingdoms, activated by a diversity of molecules. Understanding how they work in any species will provide insight for the others. The comparison study between two glutamate-gated chloride channels that present a different pharmacology from C. elegans, a nematode, and Aplysia californica, a mollusk provided us with new structural insight into the mechanism of action of this class of receptor.

INTRODUCTION
Rapid synaptic transmission in the nervous system is mediated by a very large and diverse family of ligand-gated ion channels and impairment of these receptors can trigger multiple diseases. 2-cys-loop receptors are anionic ligand-gated ion channels comprising the glycine receptor, its unique representative in vertebrates, and receptors in invertebrates that have been shown to be activated by glutamate or inhibited by protons.

Up to now, invertebrate 2-cys-loop receptors have been cloned and expressed only in ecdysozoa (a superphyla comprised of nematodes and arthropods).

Success in cloning the first glutamate-gated chloride channels in the lophotrocozoa (the other major superphyla of invertebrates, comprised mainly of molluscs and annelids) along with the determination of the first 3D structure of a glutamate-gated chloride channel in the nematode C. elegans made us envision the possibility of studying new structural determinants of 2-cys-loop receptors and comparing receptors of these two superphyla through molecular modeling.

METHOD
A homology model of the Aplysia californica glutamate-gated chloride channel was built on the basis of the recently published structure of the glutamate-gated chloride channel in C. elegans. As we were interested in the binding of glutamate to these receptors, only two adjacent subunits of the pentameric receptors were considered and modelled.

Principal and complementary faces are respectively displayed in purple and gold in Figure 1.

1. Sequences of the glutamate-gated chloride channels along with other anionic 2-cys-loop receptors were aligned using the Align123 algorithm:• GluClAc1 and GluClAc2 of Aplysia californica• GluClcryst (from the 3D structure) and GluCl a2b (for the biological assays) of C. elegans• the glycine receptor Glyα1 from Rattus norvegicus• the GABA receptor from Homo sapiens, GABAA-P1
 2. A homology model of GluClAc2 was built and refined. • The homology model was built based on the abovementioned alignment between GluClAc2 and GluClcryst sequences using MODELER
 • The built homology model was refined using molecular dynamics using CHARMm
 3. Ligands were docked in the homology model of GluClAc2: glutamate, B-alanine, y-aminobutyric acid and taurine using CDocker.
 4. Visualization and analysis of the interactions between the receptors and the ligands were performed using BIOVIA Discovery Studio.

Figure 1: 3D representation of two adjacent subunits of the pentameric glutamate-gated chloride channel in C. elegans as determined by Hibbs and Gouaux. a-helices and B-sheets are respectively represented by tubes and flat arrows. Glutamate at the interface of the two subunits is represented in CPK (PDB code 3RIF).
Comparison of the binding modes of the two receptors. The binding mode of GluClA\textsubscript{c2} is predicted thanks to the built homology model.

In both receptors, the \(\gamma\)-carboxylate groups of glutamate are bound to an arginine on the complementary face. The differences between the two binding pockets lie in the binding of the \(\alpha\)-carboxylate. In GluClcryst, the \(\alpha\)-carboxylate of glutamate is bound to an arginine (R\textsubscript{37} identified as a difference in the sequence alignment) on the complementary face, while it is bound to an arginine on the principal face in GluClA\textsubscript{c2}. Moreover, TYR\textsubscript{54} in GluClA\textsubscript{c2} interacts with glutamate and is supported by LEU\textsubscript{79}, a residue that is aligned with R\textsubscript{37} in GluClcryst.

Biological assays on mutated receptors.

The role of the residues identified as interacting with the glutamate by the study of the crystallographic structure of GluClcryst and the homology model of GluClA\textsubscript{c2} have been assessed through biological assays on mutated receptors. The results of mutations at positions suggested by the comparative analysis of the abovementioned structures are shown in Figure 3.

Docking of additional ligands in the homology model of GluClA\textsubscript{c2}.

The biological assays were performed in the Laboratoire de Physiologie Cérébrale at Université Paris Descartes.

1. Site-directed mutagenesis was performed to obtain mutated receptors. All mutations were confirmed by sequencing.
2. Wild-type and mutated receptors were expressed at the surface of Chinese Hamster Ovary cells.
3. Activity of the receptors was assessed through electrophysiological recording of individual cells under fast perfusion of solutions containing the considered ligands.

RESULTS

Different pharmacology of \(C.\) elegans and Aplysia receptors.

While \(C.\) elegans glutamate-gated chloride channel GluCl\textsubscript{A2b} is only activated by glutamate, Aplysia californica GluClA\textsubscript{c2} is activated by glutamate, but also by B-alanine, GABA and taurine, yet more weakly.

Analysis of the sequence alignment of GluClcryst and GluClA\textsubscript{c2}.

The sequence identity is 34.7%, the sequence similarity is 59.2%. The alignment is compact and all the binding site residues of GluClcryst are conserved in GluClA\textsubscript{c2} except for R\textsubscript{37}.

The numbering of the positions used in this document is based on this alignment.

Figure 2: Sequence alignment of the sequences of the extracellular domains of GluClcryst (\(C.\) elegans) and GluClA\textsubscript{c2} (Aplysia californica). Residues binding glutamate in the 3D structure are outlined, in green if an identical or similar residue is aligned in GluClA\textsubscript{c2} or in red if not.

RESULTS

Different pharmacology of \(C.\) elegans and Aplysia receptors.

While \(C.\) elegans glutamate-gated chloride channel GluCl\textsubscript{A2b} is only activated by glutamate, Aplysia californica GluClA\textsubscript{c2} is activated by glutamate, but also by B-alanine, GABA and taurine, yet more weakly.

Analysis of the sequence alignment of GluClcryst and GluClA\textsubscript{c2}.

The sequence identity is 34.7%, the sequence similarity is 59.2%. The alignment is compact and all the binding site residues of GluClcryst are conserved in GluClA\textsubscript{c2} except for R\textsubscript{37}.

The numbering of the positions used in this document is based on this alignment.

Figure 3: 3D representation of the binding pockets of the 3D structure of GluClcryst on the left, and of the homology model of GluClA\textsubscript{c2} on the right. Glutamate is displayed in ball and stick and the backbone of the protein in grey ribbon. Residues discussed below are represented as sticks, magenta for the principal face and gold for the complementary face.

Figure 4: Response of mutated receptors to different concentrations of glutamate for \(C.\) elegans (left) and Aplysia californica (right).

The role of the residues identified as interacting with the glutamate by the study of the crystallographic structure of GluClcryst and the homology model of GluClA\textsubscript{c2} have been assessed through biological assays on mutated receptors. The results of mutations at positions suggested by the comparative analysis of the abovementioned structures are shown in Figure 3.

Figure 5: 2D representation of the 4 ligands docked in the homology model of GluClA\textsubscript{c2}. Negatively and positively charged groups at physiological pH are highlighted in orange and green, respectively.
The three ligands present a negatively charged group (carboxylate or sulfonate) and a positively charged group (ammonium) at each side of the carbon chain. Glutamate presents a second carboxylate group in a position. These ligands adopt similar conformations in their dockings in the homology model of GluClA2. In particular, the negatively charged group on the other end of the carbon chain binds to the same residue: R37Glu (see Figure 3). The ammonium of GABA, B-alanine and taurine is interacting with Y96 through cation-Pi interaction. Finally, the B-carboxylate of glutamate, that has no equivalent in the other ligands, is interacting with ARG135.

DISCUSSION

Some observations arise when comparing these two glutamate-gated chloride channels in a nematode (C. elegans) and a mollusk (Aplysia californica) using molecular modeling and biological assays, which can be confirmed by the analysis of three other 2-cys-loop receptors.

<table>
<thead>
<tr>
<th>Pos</th>
<th>GluClcryst</th>
<th>GluClA2b</th>
<th>GluClAc2</th>
<th>GlyRα1</th>
<th>GABA,τ-p</th>
<th>GluClAc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>R56</td>
<td>R130</td>
<td>R98</td>
<td>R93</td>
<td>R125</td>
<td>595</td>
</tr>
<tr>
<td>37</td>
<td>R37</td>
<td>R111</td>
<td>L79</td>
<td>N74</td>
<td>E106</td>
<td>L76</td>
</tr>
<tr>
<td>54</td>
<td>T54</td>
<td>T128</td>
<td>Y96</td>
<td>F91</td>
<td>Y123</td>
<td>Y93</td>
</tr>
<tr>
<td>93</td>
<td>P93</td>
<td>Q167</td>
<td>R135</td>
<td>A129</td>
<td>V161</td>
<td>R132</td>
</tr>
</tbody>
</table>

Table: list of the aligned residues at the positions of interest in the alignment of 2-cys-loop receptors (position of the residue in the alignment, part of the ligand interacting with the residue, residue for the different receptors).

Arginine at position 37 requires a second negatively charged group in the ligand.

GluClcryst and GluClA2b are activated only by glutamate. As can be seen in Figure 3, the arginine at position 37 in GluClcryst (R37) is located on the complementary face, in the middle of the binding pocket and structurally in the same location as Y54 in GluClA2. It has already been stated that the ammonium groups of GABA, B-alanine and taurine are interacting with Y54 in GluClA2. Therefore, these three ligands in GluClcryst would have their ammonium facing the arginine R37. This would create a repulsion, which is screened by the a-carboxylate of glutamate. Hence, an arginine at position 37 requires a negatively charged group on the ligand to screen the repulsion.

An arginine at position 37 cannot accommodate a phenylalanine or tyrosine at position 54.

It has already been observed that LEU79 is supporting TYR96 in GluClA2. Moreover, TYR96 is essential to ligand binding in GluClA2 as it mutation to alanine or threonine suppressed all response of the receptor (see Figure 2). Hence, mutating LEU79 into an arginine should impede TYR96 to be rightly placed in the binding pocket. Indeed, both mutating LEU79 into an arginine in GluClA2 and mutating THR54 into a tyrosine in GluClA2b suppressed activation of the receptors.

An arginine at position 93 favours the binding of glutamate.

It has been already observed that a tyrosine or a phenylalanine at position 54 cannot accommodate an arginine at position 37. The a-carboxylate group of glutamate in receptors having a tyrosine or phenylalanine at position 54 can interact with an arginine at position 93 (see Figure 3). Indeed, GluClA2 presents an arginine at this position (R135) and is activated by glutamate, while GlyRα1 and GABAAβ1 do not present this arginine and are not activated by glutamate.

CONCLUSIONS

Thanks to the combined results of homology modeling using BIOVIA Discovery Studio and experimental biology tests, some structural determinants of 2-cys-loop receptors have been discovered. Moreover, the ligand specificity of these 2-cys-loop receptors has been reduced to a simple analysis of residue composition at essential positions in the sequence alignment with other 2-cys-loop receptors. With this new tool in hand, the ligand specificity of an orphan 2-cys-loop receptor can be predicted and therefore help to characterize it. Finally, the structural proximity between the Aplysia californica glutamate-gated chloride channel and the human glycine receptor can envision the possibility to use the former as an experimental model to study the latter.
Our 3DEXPERIENCE Platform powers our brand applications, serving 12 industries, and provides a rich portfolio of industry solution experiences.

Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people with virtual universes to imagine sustainable innovations. Its world-leading solutions transform the way products are designed, produced, and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding possibilities for the virtual world to improve the real world. The group brings value to over 170,000 customers of all sizes in all industries in more than 140 countries. For more information, visit www.3ds.com.